

| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

# **Experiential Learning**

|       | Student centric methods, such as experiential learning, participative learning |  |  |  |
|-------|--------------------------------------------------------------------------------|--|--|--|
| 221   | and problem solving methodologies are used for enhancing learning              |  |  |  |
| 2.3.1 | experience and teachers use ICT-enabled tools including online resource        |  |  |  |
|       | effective teaching learning process)                                           |  |  |  |

# **Abstract for Documentary Evidence**

| Details                | Documentary Evidence           | Page Number | View<br>Document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|--------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experiential  Learning | On Site demonstrative teaching | 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Methods                | Skill Based Assignment         | 13          | De la constant de la |



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

# 1. On Site demonstrative teaching

At Atmiya University, we actively incorporate On-Site Demonstrative Teaching as part of our learning methodology through industrial tours. These tours provide students with practical exposure to real-world industrial processes, helping them bridge the gap between theoretical knowledge and its application. Below are some pictures and details showcasing our students' participation in these enriching experiences.









| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

## Details of journey

Dpt. Of B.Sc. I.C. had organized am industrial visit on  $27^{\text{TH}}$  Dec. 2023 To IFFCO Located in Kalol- Gujarat. The Visit Was Organized With Prior Permission and Guidliance Of Man. T. Swami.

We Started Travelling From The College Campus At 04:30 PM Via Our College Bus On 27th Dec. 2023 Along With Our H.O.D. and Faculties. We Reached To the IFFCO Promises At Kalol With In 05:30 Hrs.

At 05 PM, we left IFFCO for Haridham next Morning, we came back to Rajkot.





| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

# Company profile

IFFCO is headquartered in New Delhi, India. Started in 1967 with 57 member cooperatives, it is today the biggest co-op in the world by turnover on GDP per capita (as per World Cooperative Monitor 2021), with around 35,000 member cooperatives reaching over 50 million Indian farmers.

## Company structure

The IFFCO Kalol Unit, spread over on 96 hectors of land is located 26 kms. Away from Ahmadabad on the Ahmadabad Mehsana state highway. The unit started commercial production in April 1975. The unit consists of plant to produce ammonia, urea, liquid carbon dioxide and dry ice along with offsite. Originally the 910 tpd ammonia plant was based on natural gas steam reforming process of M/s. M. W. Kellogg, USA and 1200 tpd urea plant was based on co2 stripping process of M/S Stamicarbon, The Netherlands. Both the plant have revamped in 1997 to enhance capacity to 1100 tpd ammonia and 1650 tpd urea. RLNG is used as feed stock for ammonia and associated gas as fuel. Water is supplied from Narmada Canal from Jaspur. Power is supplied by GEB.





| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

#### Various Plants:

#### Ammonia Plant:

The plant is being designated to produce 1150 metric-tones of ammonia per day based on M. W. Kellogg Steam Reforming Process of USA. RLNG is used for ammonia production is supplied by Reliance Petrochemicals. From total production, about 950 metric-tons ammonia per day is used in the urea plant and remaining is stored in atmospheric storage tank.

## Urea plant:

The 1650 metric-tons per day plant is based on Stamicarbon CO2 Stripping process engineered by Humphreys and Glasgow, U.K. The main raw material ammonia and carbon dioxide are from ammonia plant.

## Utility plant:

- (1) Water Treatment Plant
- (I) Cooling Towers
- (III) Air Compressor and Inert Gas Generation
- (IV) Steam Generation

## Offsite plant:

- (1) Storage Tanks
- (II) Narmada Water Treatment Plant
- (III) Effluent Treatment Plant

## Organizational structure:

Head office of IFFCO is located at New Delhi. It houses corporate staff function as:

(1) Engineering Service Division



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

- (II) Management Service Division
- (III) Finance and Accounts
- (IV) Personnel and Administration
- (V) Marketing

#### Product:

There are produce many fertilizer product but we visit only urea production plant through ammonia production plant.

#### Process Units:

Ammonia: 1160 Tons / Day

Urea: 1650 Tons / Day

### Offsite & Utilities:

Water Treatment plant: 2570 Tons / Day

Steam Generation Plant: 1920 Tons / Day

Instrument and Plant Air: 1800 Nm3 / hr

Cooling Tower: 22900 Tons / Day

Raw Water Storage: 2600 m3



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

#### Process:

# **Ammonia Manufacturing Plant**

Ammonia plant of IFFCO-Kalol was commissioned in 1974 based on natural gas steam reforming process which follows following stages one by one.

- ✓ Natural gas desulfurization
- ✓ Catalytic Steam Reforming
  - o Primary steam reforming
  - o Secondary steam reforming
- ✓ Carbon monoxide shift (HT & LT)
- ✓ Carbon dioxide removal
- ✓ Methanation
- ✓ Ammonia synthesis

## Flow diagram of ammonia synthesis by air reforming process:-





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

#### Production of Urea

The production of urea from ammonia involves a series of chemical reactions in a process commonly known as the Haber-Bosch process. Here is an overview of the main steps:

## 1. Ammonia Synthesis:

Ammonia is the starting material for urea production.

Nitrogen gas (N2) and hydrogen gas (H2) are reacted in the presence of a catalyst (usually iron or iron oxide) at high pressure (around 200 to 300 atmospheres) and high temperature (400 to 500 degrees Celsius).

N2 + 3H2 - → 2NH3

#### 2. Ammonia Purification:

The produced ammonia contains impurities, such as unreacted nitrogen and hydrogen, as well as traces of other gases. The ammonia is purified to remove these impurities.

#### 3. Carbon Dioxide Stripping:

Urea synthesis involves the reaction of ammonia with carbon dioxide (CO2).

Carbon dioxide is stripped from the urea solution or reaction mixture to enhance the reaction with ammonia.

#### 4. Urea Synthesis:



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |
|                      | ŕ        |  |

Ammonia and carbon dioxide are reacted in a high-pressure reactor to form ammonium carbamate, an intermediate compound.

#### 5. Urea Formation:

- Ammonium carbamate decomposes to form urea and water.

#### 6. Concentration:

The urea solution is concentrated to increase the urea content and remove excess water.

### 7. Crystallization:

Urea is then crystallized from the concentrated solution, forming solid urea crystals.

### 8. Drying:

The urea crystals are dried to remove any remaining moisture, producing a granular or prilled urea product.

## 9. Quality Control:



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

Stringent quality control measures are implemented throughout the process to ensure the urea meets industry standards.

### 10. Packaging:

The final urea product is packaged into bags or other containers suitable for storage and transportation.

#### Group observations and learning's

General points that our group might have observed or learned during the visit:

- 1. Manufacturing Processes:
- Understanding the intricacies of urea production, from ammonia synthesis to the final product.
- Observing the technology and machinery involved in each step of the manufacturing process.
- 2. Safety Protocols:
- Noting the strict adherence to safety measures and protocols within the plant.
- Learning about the importance of safety in the chemical industry.
- 3. Environmental Practices:
- Observing any environmentally friendly practices implemented by IFFCO.
- Gaining insights into how the company addresses environmental sustainability.
- 4. Quality Control:
- Understanding the rigorous quality control measures in place to ensure the final product meets industry standards.
- Learning about the testing procedures used to maintain product quality.



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

#### 5. Organizational Structure:

- Observing the organizational structure of IFFCO Kalol Plant and understanding the roles of different departments.
- Learning how effective communication and coordination contribute to the smooth functioning of the plant.

### 6. Technology and Innovation:

- Witnessing the use of advanced technology and innovative processes in urea production.
- Understanding how technological advancements contribute to efficiency and product quality.

#### 7. Employee Roles and Responsibilities:

- Interacting with IFFCO personnel to understand their roles and responsibilities.
- Gaining insights into the teamwork and collaboration required for successful plant operations.

### 8. Industry Compliance:

- Observing how IFFCO complies with industry regulations and standards.
- Understanding the importance of adhering to legal and regulatory requirements in the chemical industry.

#### 9. Supply Chain and Distribution:

- Learning about the logistics involved in the supply chain and distribution of urea products.
- Observing how IFFCO ensures timely and efficient product delivery to endusers.

#### 10. Overall Impression:



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

- Sharing collective impressions of the visit, including any surprises or notable aspects.
- Reflecting on how the visit contributed to a better understanding of the fertilizer manufacturing industry.

Encourage members of our group to share their individual perspectives and takeaways, as this can lead to a more comprehensive understanding of the visit.

#### Our experience from the industrial visit

- · Provides an insight into the real working environment
- Industrial visits provide me an insight into the real working environment, workstations, plants, assembly lines, machines, systems, and interact with highly trained and experienced personnel.
- Provides an opportunity to plan, organize and engage things: like, Industries are working on rules and regulations. They have a proper time set for every work.
- A good opportunity to interact with the experts.
- During the industrial visits, the I get a chance to experience and learn to
  manage what professionals live, study various management concepts
  like 'Just In Time' or Lean manufacturing, and the way they're put into
  action. It's very challenging to manage hundreds of skilled and unskilled
  workers at the same time and meet the stringent quality norms and
  production targets of the company.

#### Conclusions

Our visit to IFFCO Kalol Plant provided a profound insight into the intricate world of fertilizer manufacturing. The journey through the various stages of urea production, from ammonia synthesis to the final granulated product, showcased the meticulous processes and advanced technologies employed by IFFCO. The commitment to safety was evident throughout the plant, underlining the company's dedication to maintaining a secure working environment.

Witnessing the seamless coordination among different departments emphasized the significance of effective organizational structure and communication. The emphasis on quality control measures highlighted IFFCO's unwavering commitment to delivering products that meet stringent industry standards.

In conclusion, the IFFCO tour was a valuable educational experience, offering a blend of theoretical knowledge and practical insights. The visit not only deepened our understanding of the fertilizer manufacturing industry but also ignited a profound appreciation for the complexity and precision involved in ensuring the production of high-quality agricultural products. We extend our gratitude to IFFCO for opening its doors and providing us with this enriching opportunity.



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

# 2. Skill Based Assignment

At Atmiya University, we emphasize Skill-Based Assignments to enhance students' practical abilities and align their learning with industry requirements. These assignments focus on applying theoretical knowledge to real-world scenarios, fostering critical thinking, creativity, and problem-solving skills. Below are examples and details of how students engage with such assignments, showcasing our commitment to skill development and hands-on learning.





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| +ime     | tempetante cio | tempetore (c) |
|----------|----------------|---------------|
| (Selond) | (theymameter)  |               |
| 2        | 40             | 36.55         |
| 4        | 57             | 57.80         |
| 6        | 68             | 69.70         |
| 8        | 73             | 76. 50        |
| 10       | 77             | 79.90         |
| 12       | 80             | 82.45         |
| 14       | 91             | .83.30        |
| 16       | 73             | 84-15         |
| 18       | 84             | 84.49         |
| 20       | 84             | 84.74         |
| 22       | 84             | 84,83         |
| 24       | 85             | 24.92         |
| 26       | 85             | 84-94         |
| 29       | 85             | 84.96         |
| 30       | \$5            | 84.99         |
| 32       | 85             | 84.99         |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|       | tles                      |
|-------|---------------------------|
|       | Q near                    |
| *     | Calculation:              |
|       | A = 85                    |
|       |                           |
|       | 53.72<br>From graph = 3.6 |
| *     | Qt + lime (t) = 2 Sec     |
|       | J(1) = A (1-e-t/e)        |
|       | J(1) = 85 (1-e-2/3.6)     |
|       | = 85 (1-0.57)             |
|       | = 85 (0-43)               |
|       | = 36.55°                  |
| *     | ct + ime (t) = 4 sec      |
|       | J(1) = A (1-e-1/e)        |
|       | = 85 ( J- e-4/3.6)        |
| 1 102 | = 85 ( 0.68)              |
|       | = 57.8°C                  |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| -       |                               |
|---------|-------------------------------|
| *       | at time (t) = 6 sec           |
|         | $J(t) = A(z - e^{-t/e})$      |
|         | = 85 (J-e <sup>-6/3.6</sup> ) |
|         | = 95 (0.82)                   |
|         | = 69.70                       |
| *       | 94 time (1) = 8 sec           |
|         | J(+)= A (3-e-+1e)             |
|         | = 85 (0.90)                   |
|         | = 76.5 c'                     |
| *       | at time (t) = 20 sec          |
|         | J(t) = A (2- e-t/c)           |
|         | = 85 (0.94)                   |
|         | = 79.9 c                      |
| *       | 9+ time (+) = 12 sec          |
|         | $J(t) = A(1 - e^{+t/\ell})$   |
|         | $= 85 (2 - e^{-12/3.6})$      |
| - Table | ₹82. 45 ¢                     |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| *   | at time (+) = 14 sec            |
|-----|---------------------------------|
|     | $D(+) = A(1 - e^{-t/e})$        |
|     | = 85 (J-e <sup>-14</sup> /3.6)  |
|     | = 83.3c ]                       |
| ×   | at time (t) = 16 sec            |
|     | $J(t) = A (J - e^{-t/e})$       |
|     |                                 |
|     | $= 85 (2 - e^{-16}/3.6)$        |
|     | = 84.15 c'                      |
| 700 |                                 |
| *   | at time $(t) = 18$ sec          |
|     | $J(t) = A(1 - e^{-t/e})$        |
|     | 197                             |
|     | $=85(1-e^{-18}/3.6)$            |
|     | L ou hacil                      |
|     | = 84.490                        |
| *   | at time $(t) = 20$ sec          |
|     | J(+) = A (1-e-tle)              |
|     | JC13                            |
|     | = 85 (J- e <sup>-20</sup> /3.6) |
|     | [= 011 711 -1]                  |
|     | ]=84.74 c']                     |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|      |   | C Prop                          |
|------|---|---------------------------------|
| N.   |   | H 11m2 412 = 20 ccc             |
| -*   |   | H +ime (+) = $22$ sec           |
|      |   | $J(t) = A (1 - e^{-t/e})$       |
|      |   | $= 85 (1 - e^{-22/3.6})$        |
|      |   | = 84.83c                        |
| *    | + | at +1me (+) = 24 sec            |
|      |   | $g(t) = A(z - e^{-t/e})$        |
|      |   | =85 (I-e-24/3.6)                |
|      |   | = 84.93 ()                      |
| 7    | × | Qt time (+) = 26 Sec            |
|      |   | J(+) = A(z-e+le)                |
| 1    |   | = 85 (1 -e <sup>-26</sup> /3.6) |
|      |   | = 84.940                        |
|      | * | at time (t) = 28 sec            |
| 1    |   | J(+) = A ( 1- e-+10)            |
| 1    | 1 | = 85 (1-e <sup>-28</sup> /3.6)  |
| Atmi |   | 5 44. 95¢                       |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|      | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 16 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *    | at time (+) = 30 se c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 1(+)= A (3-e-+/e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | = 85 (2-e-30/3.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | = 84.98¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ¥    | Q+ time (+) = 32 58C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | J(+) = A (2-e-tle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | = 85 (1-e <sup>-32</sup> /3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | = 84.99 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Colon-cia-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 10-10 May 23-25-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | The Parks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | The second secon |
|      | tole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| WEST     |                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 01/ Bhensdadija Рязуапк J.                                                                                                                                  |
| U)       | Do you see anything attached to the coil to enhance head transfer?                                                                                          |
| ->       | condenser coil, a device called condenser for is attached.                                                                                                  |
| <i>→</i> | The condenses from is responsible for in creasing the air flow over the condenses will.  How it is work:-?                                                  |
| >        | The condenser form blow as a over the condenser coil, which helps carry away heat more assective                                                            |
| 7        | It is continuous process and allow to operate effectionty heat transfer in retrigenator.                                                                    |
| ->       | The condenser fam is causical fas optimizing heat transfer in the refrigeration condenser coil, ensuring the appliance can effectively cool its condensets. |
|          | 1 size & Shoupe :-                                                                                                                                          |
| ->       | Larger fridges may need more powerful . system to ancintain low teamperenture.                                                                              |
|          |                                                                                                                                                             |
|          |                                                                                                                                                             |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|             | OI   Bhensdadija Pritank J. Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>&gt;</b> | Decresionally you will here ice - cubes dropping in to the ice-bar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Condenser fam:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>→</u>    | The condenses fun is situated in a cubinet at the bottom of the fridge, near the compresses and condenses coil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Su          | The funs suns whenever the compresser sums and it downs cool non air through the front skille and circulate It through the compressor and condenser wils over the compressor and bound out the front grille into the soom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Compressor-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | The compressing recieves low pressure gos from the evaluated and converts it to high pressure gos through compression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Kan        | relien the transmitted the Landon and the country of the Landon and the Landon an |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| $\Rightarrow$ | Fluid Mechanics: (Experimential Assignment)                   |
|---------------|---------------------------------------------------------------|
|               |                                                               |
| $\rightarrow$ | Location -> Home (Bathsoom)                                   |
|               |                                                               |
| (A)           | When the valve is slightly open:                              |
| · ·           |                                                               |
| _             | D = Diameter of Pipe = 2 cm = 0.02 meters                     |
|               | e = Density of fluid = 103 kg/m3                              |
|               | 4 = Viscosity of fluid = 1 kg/m/s x 10-3 (kg/ms)              |
| ->            | Time terken for 1 litre volume = 21 sec                       |
| 38/           | so that 0.0476 litse/second.                                  |
|               | $Q = 4.76 \times 10^{-5}  \text{m}^3/\text{second}$           |
| 187           |                                                               |
|               | Q = Y A                                                       |
|               | . 4 = 0/A                                                     |
|               | $=4.76\times10^{-5}$ = $4.76\times10^{-5}\times4=0.15159$ m/s |
|               | $T/4 (D)^2$ 3.14 × (0.02) <sup>2</sup>                        |
|               |                                                               |
| =>            | Reynold's No. (NRe) = D 4 9 = 0.02 x 0.15159 x 10             |
|               | 4 1.002×10                                                    |
|               | $= 3.0318 \times 10^{3}$                                      |
|               | = 3031.8                                                      |
| =)            | Type of Flow Rate = termings flow                             |
|               | Transition Frow.                                              |
|               | [NRE > 2100]                                                  |
|               |                                                               |
|               |                                                               |



| NAAC – Cycle – 1      |  |  |
|-----------------------|--|--|
| <b>AISHE: U-0967</b>  |  |  |
| Criterion- 2 T, L & E |  |  |
| KI 2.3 M 2.3.1        |  |  |

| (B) When the Valve is pasticity open.  - D = Diemetes of Pipe = 2 cm = 0.02 metess  S = Density of fluid = 103 kg/m³  H = Viscosity of fluid = 1.002 x 10³ kg/ms.  -> Time taken for 1 litse volume = 7.08 sec.  50 that 0.14124 xitse / second  C = 0.00014124 m³/s   O = 4 A  u = O/A  = 1.4124 x10^4  TV4 (D)P  = 1.4124 x10^4  3.14 (0.02)²  = 0.4498 m/s  PReynold's No. (NRe) = 0.4.8 = 0.02 x 0.4498 x 10²  1.002 x10-3  = 8978.04  -> Tupe of Flow Rate = Tusbulent Flow  (NRe > 4000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Meet Kethisiya 2107020                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------|
| S = Density of Avid = 103 kg/m <sup>3</sup> H = Viscosity of fluid = 1.002 x 10 <sup>3</sup> kg/ms.  Time taken for 1 litre volume = 7.08 sec.  50 that 0.14124 xitre/second  Q = 0.00014124 m <sup>3</sup> /s   Q = 4 A  u = 6/A  = 1.4124 x10 <sup>-4</sup> Ty4 (D) <sup>2</sup> = 1.4124 x10 <sup>-4</sup> x 4  3.14 (002) <sup>2</sup> = 0.4498 m/s  Prevnold's No. (NRe) = D. 4.8 = 0.02 x 0.4498 x 10 <sup>-4</sup> 1.002 x 10 <sup>-3</sup> = 8978.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) | when the Valve is pastially open.          |
| S = Density of Avid = 103 kg/m <sup>3</sup> H = Viscosity of fluid = 1.002 x 10 <sup>3</sup> kg/ms.  Time taken for 1 litre volume = 7.08 sec.  50 that 0.14124 xitre/second  Q = 0.00014124 m <sup>3</sup> /s   O = 4 A  u = 0/A  = 1.4124 x10 <sup>-4</sup> T/4 (D) <sup>2</sup> = 1.4124 x10 <sup>-4</sup> x 4  3.14 (002) <sup>2</sup> = 0.4498 m/s  Prevnold's No. (NRe) = D. 4.8 = 0.02 x 0.4498 x 10 <sup>-4</sup> 1.002 x 10 <sup>-3</sup> = 8978.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | D. Diamalas at Sing Can appear             |
| #= Viscosity of fluid = 1.002 x 103 kg/ms  Time taken for 1 litre volume = 7.00 sec.  50 that 0.14124 xitre / second  0 = 0.00014124 m³/s  0= 4 A  u = 0/A  = 1.4124 × 10-4  T/4 (D) <sup>2</sup> = 1.4124 × 10-4 × 4  3.14 (002) <sup>2</sup> = 0.4498 m/s  Reynold's No. (NRe) = D. 4.5 = 0.02 × 0.4498 × 10-4  1.002 × 10-3  = 8978.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                            |
| Time taken for 1 litre volume = 7.08 sec.  50 that 0.14124 sitre / second $Q = 0.00014124 \text{ m}^3/\text{s}$ $Q = 4 \text{ A}$ $Q = 0.4424 \times 10^{-4}$ $Q = 0.4448 \text{ m/s}$ = 1.4124 × 10 <sup>-4</sup> × 4  3.14 (002) <sup>2</sup> = 0.4448 m/s  = Reynold's No. (NRe) = 0.4.8 = 0.02 × 0.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448 × 10.4448                                                                                                                                                                                                                                                                |     |                                            |
| 50 that 0.14124 life / second $C = 0.00014124 \text{ m}^3/\text{s}$ $O = 4 \text{ A}$ $U = 0^6/\text{A}$ $U = 1.4124 \times 10^{-4} \times 4$ $U = 1.4124 \times 10^{-4} \times 4$ $U = 0.4498 \text{ m/s}$ $U =$ |     | TE VISCOSITY OF FIGURE 2 HOLE X TO 13/115  |
| $0 = 0.00014124 \text{ m}^{3}/5$ $0 = 4 \text{ A}$ $u = 0/A$ $= 1.4124 \times 10^{-4}$ $T/4 (D)^{2}$ $= 1.4124 \times 10^{-4} \times 4$ $3.14 (0.02)^{2}$ $= 0.4498 \text{ m/s}$ $=) \text{ Reynold's No. (NRe)} = D. 4.8 = 0.02 \times 0.4498 \times 10^{-3}$ $= 8978.04$ $\Rightarrow \text{ Type of Flow Rate} = \text{ Tysbylent Flow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -)  | Time taken for 1 litse volume = 7.08 sec.  |
| $0 = 4 A$ $u = \frac{6}{4}$ $= 1.4124 \times 10^{-4}$ $T/4 (D)^2$ $= 1.4124 \times 10^{-4} \times 4$ $3.14 (0.02)^2$ $= 0.4498 \text{ m/s}$ $\Rightarrow \text{Reynold's No. (NRe)} = D. 4.8 = 0.02 \times 0.4498 \times 10^{-3}$ $= 8978.04$ $\Rightarrow \text{Type of Flow Rate} = \text{Ty8bylent Flow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3   | so that 0.14124 sitze / second             |
| $u = \frac{0}{4}$ = 1.4124 × 10 <sup>-4</sup> T/4 (D) <sup>2</sup> = 1.4124 × 10 <sup>-4</sup> × 4  3.14 (0.02) <sup>2</sup> = 0.4498 M/s  = Reynold's No. (NRe) = D. 4.8 = 0.02 × 0.4498 × 10 <sup>-4</sup> 1.002 × 10 <sup>-3</sup> = 8978.04  Type of Flow Rate = Tysbylent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | $Q = 0.00014124 \text{ m}^3/5$             |
| $= 1.4124 \times 10^{-4}$ $= 1.4124 \times 10^{-4} \times 4$ $= 1.4124 \times 10^{-4} \times 4$ $= 3.14 (0.02)^{2}$ $= 0.4498 \text{ M/s}$ $= \text{Reynold's No. (NRe)} = 0.4.8 = 0.02 \times 0.4498 \times 10^{-3}$ $= 8978.04$ $= 3978.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | O= 4 A                                     |
| Type of Flow Rate = Tysbulent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                            |
| $= 1.4124 \times 10^{-4} \times 4$ $3.14 (0.02)^{2}$ $= 0.4498 \text{ m/s}$ $= \text{Reynold's No. (NRe)} = 0.4.3 = 0.02 \times 0.4498 \times 10^{-3}$ $= 8978.04$ $= 3978.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | = 1.4124 × 10-4                            |
| $3.14 (0.02)^{2}$ $= 0.4498 \text{ m/s}$ $= \text{Reynold's No. (NRe)} = 0.4.9 = 0.02 \times 0.4498 \times 10^{-3}$ $= 8978.04$ $= 3978.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | T/4 (D)2                                   |
| = 0.4498 M/s  = 0.4498 M/s  = Reynold's No. (NRe) = 0.4.9 = 0.02 × 0.4498 × 10.  = 8978.04  = 748 by lent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | $= 1.4124 \times 10^{-4} \times 4$         |
| => Reynold's NO. (NRe) = D. 4. 9 = 0.02 × 0.4498 × 10.  Place 1.002 × 10-3  = 8978.04  => Type of Flow Rate = Tysbylent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 3.14 (0.02)2                               |
| = 8978.04<br>= 8978.04<br>=) Type of Flow Rate = Tysbulent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | = 0.4498 M/s                               |
| = 8978.04<br>= 8978.04<br>=) Type of Flow Rate = Tysbulent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | - 11- No (No-1 - 0 11 8 - 002 VAINGE V 103 |
| -) Type of Flow Rate = Tysbulent Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =)  |                                            |
| THE OF THE PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | = 8978.04                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =)  | Type of Flow Rate = Tysbylent Flow         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                            |



| NAAC – Cycle – 1      |  |  |
|-----------------------|--|--|
| <b>AISHE: U-0967</b>  |  |  |
| Criterion- 2 T, L & E |  |  |
| KI 2.3 M 2.3.1        |  |  |

| 1   | Meet Kathiriya 210702000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | when the valve is fully open:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _   | Diametes of Pipe = D = 2cm = 0.02 metes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | s = Density of wates = 103 kg/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | N = Viscosity of water = 1.002 × 10-3 kg/ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _   | Time taken for 1 148e Volume - 3.98. sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 50 that 0.82572 litae/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $Q = 2.51 \times 10^{-4} \text{ m}^3/\text{sec.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30  | Q = A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $u = \Omega/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $= 2.51 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $\pi/4 \times (0)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | = 2.51 × 10-4 × 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 3.14 × (0.02)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | = 0.799  m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | the state of the s |
| ->  | Reynold's No. (NRe) = D. 4.9 = 0.02 × 0.799 × 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 4 1.002 × 10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | = 15948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -)  | Type of Flow Rate = Teansition Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (NRE > 4000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| His |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| NAAC – Cycle – 1     |          |  |  |
|----------------------|----------|--|--|
| <b>AISHE: U-0967</b> |          |  |  |
| Criterion- 2         | T, L & E |  |  |
| KI 2.3               | M 2.3.1  |  |  |

| e)  | Location          | →> 13adhseo    | Meet Ko<br>M (top)              | Milly 9 210702009               |                |                                      |                                 | Mart Kuhis | Na 2 10 3 4 |
|-----|-------------------|----------------|---------------------------------|---------------------------------|----------------|--------------------------------------|---------------------------------|------------|-------------|
| SN. | Valve             | Diametes       | Asea of                         | Flow Rote                       | Velocity       | Density                              | Viscosity                       | risc.      | Flow        |
|     | position          | of<br>Pire (m) | pipe (m²)                       | (m³/s)                          | (m/s)          | (19/m <sup>5</sup> )                 | (Ns/m²)                         |            | Partienn    |
| (1) | Slightly<br>Open  | 0.02 m         | 344 ×10 4<br>m²-                | 4.46 × 10 m3/s                  | 0.15159<br>m/s | to's kg/m²                           | 1.502×16-3<br>MS/m <sup>2</sup> | 30 H V     | Teamsilien  |
| (2) | Pastially<br>open | 5-62. m        | 9-14-K16-4<br>W-L               | 1.4124 x 10-4 m <sup>3</sup> /c | 0.449Y<br>W/S  | 10 <sup>3</sup> va/m <sup>3</sup>    | 1,002 ×10 <sup>-3</sup>         | 8978.04    | Tusbulent   |
| (3) | Fully             | 0.02 m         | s (4 × 10 ° 9<br>m <sup>2</sup> | 2.51×10-9 m3/5                  | 0.749          | 10 <sup>3</sup> (eg / m <sup>2</sup> | 1002 × 10-3                     | 15448      | Tuskylent   |

Z2/11/2024, 16:53

El Classroom > MSc-IC-MO-2022
Semester-II

Instructions Student work

Class is archived. Restore it to add or edit anything.

Restore

# Assignment-1

:

Ravi Tank • Feb 24, 2023

10 points

Due Mar 1, 2023, 11:59 PM

Identify & Draw a schematic diagram of a size reduction equipment found at your home. Give its technical details i.e. Make, Model, Capacity, Power consumption etc.

Class comments



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |

Name :- Dangar Malhar
Enrollment No: - 220722008



|   | * Potato Slicer :-                                                                                                                |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
| - | This is manual size reduction equipment which used to slices the potato Or cut it in small pieces which commonly use at our home. |
|   | on the principle of Shear.                                                                                                        |
| _ | > Equipment is made up of Stainless steel                                                                                         |
| - | are the merits of this equipment.                                                                                                 |



| NAAC – Cycle – 1 |          |  |
|------------------|----------|--|
| AISHE: U-0967    |          |  |
| Criterion- 2     | T, L & E |  |
| KI 2.3           | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |  |
|----------------------|----------|--|--|
| <b>AISHE: U-0967</b> |          |  |  |
| Criterion- 2         | T, L & E |  |  |
| KI 2.3               | M 2.3.1  |  |  |





| NAAC – Cycle – 1      |         |  |  |
|-----------------------|---------|--|--|
| <b>AISHE: U-0967</b>  |         |  |  |
| Criterion- 2 T, L & E |         |  |  |
| KI 2.3                | M 2.3.1 |  |  |

| •            | 6.28 0.11                        |
|--------------|----------------------------------|
|              | 0.11                             |
| Ne           | = 1                              |
|              | = 1 84.18                        |
|              |                                  |
|              | = 1 x 9.44                       |
|              | 6.58                             |
| No           | = 1.50 RP3                       |
|              | = 1.20×00                        |
|              | Nc = 90 Round Per minute         |
|              |                                  |
| Die          |                                  |
|              |                                  |
| of the state | Speed = 50 %. ( contrioun speed) |
|              |                                  |
|              | = 20 >30                         |
|              | 100                              |
|              | 1 - 40 RPM                       |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |
|              |                                  |



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |

|     | Classrate Page 0                                   |
|-----|----------------------------------------------------|
| =)  | Radius of the granding medica (Ban) (8) = Diameres |
|     | y: 14, cm                                          |
| -   | 8= 7 cm = 7 x102 m                                 |
|     | And 19 = 9.81                                      |
| =>0 | Now, (Xitical Speed No = 1 9                       |
| -   | Nc= 1 (4.81) (18x 102 - 7 x102                     |
|     | N <sub>c</sub> = 1 9.81<br>6.28 0.18 - 0.07        |
|     | Nc= 1                                              |
|     | No: 1 089.18 6.28                                  |
|     | Ne= 1 (9.44) 6.28                                  |
|     | Ne= 1.50 RPS                                       |



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |

| Nc= 90 RPM                                   |
|----------------------------------------------|
| Νοω                                          |
| Openating speed 8-                           |
| 3 Minimum = 50 % OF (Sitical speed)          |
| = 50 (70)<br>100                             |
| 1 = 45 Rpm                                   |
| 2) Maximum = 75 1/2 OF Chirical speed        |
| = 7s (90)<br>100                             |
| T = 67.5 RPm                                 |
| Name: Ankieshwaxija Majank D                 |
| Ensoument no :- 220122001                    |
| DePuxtment :- M. Sc. (Industrial Chemistral) |
| Course :- Mechanical Operations              |
| Consie code:- similicisos                    |
| Atmija Varvessij                             |



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |

| *   | OLD BALL MILL 8-                             |
|-----|----------------------------------------------|
| And | Schemenic diagram of Ban min &               |
|     |                                              |
|     | Bearing Coster K- Cylindrican Shen           |
|     | Housing - Court pox                          |
|     | 0.0.0.0.0.0.0.                               |
|     | Charge Charge                                |
|     |                                              |
|     |                                              |
| =>0 | Diameter of the Ban min = 36 cm              |
| 70  | Diameter of the granding media (Ban) = 14 cm |
|     | So, the Radius of the Ban min = Diameter     |
|     | = 36                                         |
|     | = 18 cm<br>R= 18 × 10 <sup>2</sup> m         |



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |

22/11/2024, 16:57 Assignment-I

Classroom > BSc-IC-PCE-I-2022



Instructions

Student work

Class is archived. Restore it to add or edit anything.

Restore

፥

# Assignment-I

Ravi Tank • Jul 15, 2022

10 points Due Jul 17, 2022, 11:59 PM

- 1) Select location like Home, office, industry etc.
- 2) Identify water taps and note its location.
- 3) Measure the diameter of the pipe.
- 4) Measure flow rates
  - a) When the valve is slightly open.
  - b) When the valve is partially open.
  - c) When the valve is fully open.
  - d) Collect 1 litre (L) of water & note down the time for collection of 1 L of water.
- 5) Calculate the flow rate.
- 6) Calculate Reynold's Number (NRE)
- 7) Comment the type of flow pattern on the basis of Reynold's Number.

Tabulate your findings as discussed in class.

Class comments



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |





| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |

| ocation<br>Dashing | Valve<br>Rosition<br>Brithelie<br>Rosition | 0<br>(m)                                             | g<br>(kgim³)                                                                                                    | д<br>(kg<br>m-s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( m)                                                                                                                                                                             | flow<br>sate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NRE                                                                  | flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enine              | Rosition<br>Enthenz                        | 6.m)                                                 | (kg1m3)                                                                                                         | д<br>(189<br>(m-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRE                                                                  | (A) 10 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - Constant         |                                            |                                                      | 2 3                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5'                                                                                                                                                                               | (m315)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      | Pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Azea .             | 115                                        | w                                                    | 10 K91m                                                                                                         | 0.001 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.051 mis                                                                                                                                                                        | 0-56 Xig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1895, 40                                                             | tammay<br>Aow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                            |                                                      | ar-                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min 2 of                                                                                                                                                                         | 1/10/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Rustians<br>alla                           | 5.24 X 10                                            | 10 K91m                                                                                                         | 6.001 x9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.150 m15                                                                                                                                                                        | 0.76×10<br>m315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3810.00                                                              | Taunsition<br>fiew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | tung<br>agen                               | 5.21 × 10.                                           | 10 KSIM                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c.39 mis                                                                                                                                                                         | 0.2×103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9906.00                                                              | Tuxevient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Crristop           | 5119hHld                                   | 3,50 x10                                             | 10 kg im                                                                                                        | 0.00) kg<br>m-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21m 550.0                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00, 0ff                                                              | tamina8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PAGA               | Papiand                                    | 3.50 × 10                                            | 10 H91m                                                                                                         | TITLE -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.081 mis                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2535.00                                                              | Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | Fund<br>ofen                               | 3 SOXIU                                              | מופא טו                                                                                                         | 0.001 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.16 mm15                                                                                                                                                                        | 0.2 x 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5600 .00                                                             | Tuxbulent<br>how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                            | 200                                                  | K 25.5                                                                                                          | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                            |                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                            |                                                      |                                                                                                                 | Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | annia .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                            |                                                      | g = 10                                                                                                          | 3 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | almuse a                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                            |                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                            | afen siightid ofen Area ofen Raptiand ofen fund ofen | open m  sight m  sight open  Abea open  Pabliquid 3.50 x10  open  Fulld 3.50 x10  open  fulld 3.50 x10  open  m | open m  sighting sightly 3,50x10 to half a  open color to half a | ofen m m.s  sight 3,50 xiv 10 kg in 3 c.001 kg  noten m m.s  ofen m m.s  ofen m m.s  ofen m m.s  full 3,50 xiv 10 kg in 3 c.001 kg  ofen m m.s  ofen m m.s  ofen m m.s  ofen m.s | ofen singhtid 3,50 xio of med | ofen m m.s m.s o.orz mis o.zi vi | Company   Comp |



| NAAC – Cycle – 1     |          |  |  |  |
|----------------------|----------|--|--|--|
| <b>AISHE: U-0967</b> |          |  |  |  |
| Criterion- 2         | T, L & E |  |  |  |
| KI 2.3               | M 2.3.1  |  |  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |





| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|                                         | PACIE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Chosuni Bash m hototols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -1                                      | frow Parren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | - Laminas 600 (2100.2 NAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6)                                      | Location ! Buthooom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | -) value Position -> Pastians ofen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                       | tion 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | 15 SEC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | 1 Sec> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | 1 x 1 = 0.066 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | new 1 m3 = 1000 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 9 = 0.066 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | 0.066 = 0.66 x 10 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -)                                      | c) co) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | 0 : 8.54 x 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 0 - 2.54 ×10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                       | pensing (8) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 8420 = 103 K91 m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | the state of the s |
| 7                                       | viscocità (M) !-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100000000000000000000000000000000000000 | A 450 = 0.001 49 ( 51046)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|    | Bhajahi dash m             | 0.020003                           | MEI / /   |
|----|----------------------------|------------------------------------|-----------|
|    |                            |                                    | 170       |
|    |                            | il miles.                          |           |
| -) | velocità (4)               |                                    |           |
|    | 100 C 10 V-                |                                    |           |
|    | QUER = U.A                 | $s_a$ . $\underline{n}$ : $\theta$ | T A       |
|    | U = QUFR                   | A = 314 x (8.                      | .5.5      |
|    | A                          | A = 314 x (2.                      | 54 X 10 ) |
|    |                            |                                    | 4         |
|    | 4 = 0-66x 104              | A - 5.064 x)                       | ,         |
|    | 5 CEU X 10                 | -                                  |           |
|    | 4 = 0,130 mis              | 7                                  |           |
|    |                            |                                    |           |
|    |                            | (a) (a)                            |           |
|    | RESTIGIT'S NUMBER CARE     |                                    |           |
| -  | Kegning S leadinge o Clone | I                                  |           |
|    | D = 8.54 x 10 m            |                                    |           |
|    | 4 = 0.130 m15              | 99.01                              |           |
|    | 9 = 103 kg1 m3             |                                    |           |
|    | PA 100.0 = H               | Constitution of                    | 11        |
|    | n.5                        | 100                                |           |
|    |                            | TO THE                             |           |
|    | NRE = 0.4.9                |                                    |           |
|    | Я                          | (9) Cosylla                        |           |
|    | NRE : 2.54 x 10 x c.       | 130 XID                            |           |
|    | o.cc)                      | 1000                               |           |
|    | NRE = 3302.00              |                                    |           |
|    | 7                          | Constitution .                     |           |
|    |                            |                                    |           |
| -  | flow Pattern               | Devis del                          |           |
|    |                            | Paramon Prana Trans                | A         |
|    | - Transition from          | (2100 / NRC / 400                  | ()        |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

|                    | grapani zash m. zastara             | PAGE 113 ( |
|--------------------|-------------------------------------|------------|
| 3]                 | Location : Buttoom                  |            |
| -)                 | value Position -> fund ofen         |            |
| -)                 | flow sale                           |            |
|                    | 8 800 -> 16                         |            |
|                    | 1 Sec -> 9                          |            |
|                    |                                     |            |
|                    | 1 x 1 = 0.125 LIS                   |            |
|                    | 8                                   |            |
|                    | Now im3 - fees t                    |            |
|                    | 9 - 0.125 L                         |            |
|                    | 0.75 5 0.125 X 10 m 15              |            |
|                    | 1600                                |            |
|                    |                                     | Land       |
| -                  | Diameter (0):                       |            |
|                    | 0: 8.54 × 10 m                      |            |
| 7                  | pencira (s) !-                      |            |
|                    | SHSO : 1/2 MDIM3                    |            |
|                    | ne 237 3 105                        |            |
| 7                  | viscocho (A):                       |            |
|                    | SHASO : O.COI AS (Stake)            |            |
|                    | m.5                                 |            |
| THE REAL PROPERTY. | The same and a second of the second |            |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |

| -  |                                                       |                           | FASE NO.      |
|----|-------------------------------------------------------|---------------------------|---------------|
|    | Bhosani Jash m                                        | £1380F00S                 | DATE: 1 /     |
| -) | Velocità cu) :-                                       |                           |               |
|    | PUFR = U.A                                            |                           |               |
|    | u = aufr                                              | $A = \frac{n}{u} \cdot 0$ | 3             |
|    | A                                                     | A = 3.10                  | x ( 2 34 x 10 |
|    | U = 0-125 x 103<br>5.064 x 10                         | u                         | -4            |
|    |                                                       | A = 50                    | 64 × 10'      |
|    | 4 = 0.024 x 10 m15                                    |                           |               |
|    | = = =                                                 |                           |               |
| -) | Reanold's number (NR                                  | ) '-                      |               |
|    | 0 = 2.54 x12 m                                        |                           |               |
|    | 4 = 0.24 m/s<br>8 = 10 <sup>3</sup> kg/m <sup>3</sup> |                           |               |
|    | 4 = 0.001 kg                                          |                           |               |
|    | m-5                                                   |                           |               |
|    | mae = 0.4.9 mae                                       | 2.54x 10 x                | 0.24 × 10     |
|    | д                                                     | 0.001                     |               |
|    | T\R€                                                  | > @ 6c96.00               |               |
| -) | frow Passen                                           |                           |               |
|    | - TUXBUIENT Flow                                      | C 4000 & NRC)             | ).            |
|    | - Tusbulent flow                                      | C 4000 ( NRC)             | )             |



| NAAC – Cycle – 1     |          |  |
|----------------------|----------|--|
| <b>AISHE: U-0967</b> |          |  |
| Criterion- 2         | T, L & E |  |
| KI 2.3               | M 2.3.1  |  |



